. A P ] 2 5 Se p 20 06 MINIMAL - MASS BLOWUP SOLUTIONS OF THE MASS - CRITICAL NLS

نویسنده

  • XIAOYI ZHANG
چکیده

We consider the minimal mass m0 required for solutions to the mass-critical nonlinear Schrödinger (NLS) equation iut + ∆u = μ|u|4/du to blow up. If m0 is finite, we show that there exists a minimal-mass solution blowing up (in the sense of an infinite spacetime norm) in both time directions, whose orbit in Lx(R d) is compact after quotienting out by the symmetries of the equation. A similar result is obtained for spherically symmetric solutions. In a subsequent paper we shall use this compactness result to establish global existence and scattering in Lx(R d) for the defocusing NLS in three and higher dimensions with spherically symmetric data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . A P ] 1 6 O ct 2 00 6 MINIMAL - MASS BLOWUP SOLUTIONS OF THE MASS - CRITICAL NLS

We consider the minimal mass m0 required for solutions to the mass-critical nonlinear Schrödinger (NLS) equation iut + ∆u = μ|u|4/du to blow up. If m0 is finite, we show that there exists a minimal-mass solution blowing up (in the sense of an infinite spacetime norm) in both time directions, whose orbit in Lx(R d) is compact after quotienting out by the symmetries of the equation. A similar res...

متن کامل

Ground State Mass Concentration for Nls

We consider finite time blowup solutions of the L 2-critical cubic focusing nonlinear Schrödinger equation on R 2. Such functions, when in H 1 , are known to concentrate a fixed L 2-mass (the mass of the ground state) at the point of blowup. Blowup solutions from initial data that is only in L 2 are known to concentrate at least a small amount of mass. In this paper we consider the intermediate...

متن کامل

Nonlinear Schrödinger Equations at Critical Regularity

1 2 ROWAN KILLIP AND MONICA VIS¸AN Contents 1. Introduction 3 1.1. Where are we? And how did we get there? 6 1.2. Notation 9 2. Symmetries 9 2.1. Hamiltonian formulation 9 2.2. The symmetries 10 2.3. Group therapy 13 2.4. Complete integrability 14 3. The local theory 15 3.1. Dispersive and Strichartz inequalities 15 3.2. The ˙ H s x critical case 16 3.3. Stability: the mass-critical case 20 3.4...

متن کامل

Characterization of Minimal-Mass Blowup Solutions to the Focusing Mass-Critical NLS

Let d ≥ 4 and let u be a global solution to the focusing masscritical nonlinear Schrödinger equation iut + ∆u = −|u| 4 d u with spherically symmetric H x initial data and mass equal to that of the ground state Q. We prove that if u does not scatter then, up to phase rotation and scaling, u is the solitary wave eQ. Combining this result with that of Merle [15], we obtain that in dimensions d ≥ 4...

متن کامل

On Stability of Pseudo-conformal Blowup for L-critical Hartree Nls

We consider L-critical focusing nonlinear Schrödinger equations with Hartree type nonlinearity i∂tu = −∆u− ` Φ ∗ |u| ́ u in R, where Φ(x) is a perturbation of the convolution kernel |x|. Despite the lack of pseudo-conformal invariance for this equation, we prove the existence of critical mass finite-time blowup solutions u(t, x) that exhibit the pseudoconformal blowup rate L2x ∼ 1 |t| as t ր 0. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006